Dual role of the molybdenum cofactor biosynthesis protein MOCS3 in tRNA thiolation and molybdenum cofactor biosynthesis in humans.
نویسندگان
چکیده
We studied two pathways that involve the transfer of persulfide sulfur in humans, molybdenum cofactor biosynthesis and tRNA thiolation. Investigations using human cells showed that the two-domain protein MOCS3 is shared between both pathways. MOCS3 has an N-terminal adenylation domain and a C-terminal rhodanese-like domain. We showed that MOCS3 activates both MOCS2A and URM1 by adenylation and a subsequent sulfur transfer step for the formation of the thiocarboxylate group at the C terminus of each protein. MOCS2A and URM1 are β-grasp fold proteins that contain a highly conserved C-terminal double glycine motif. The role of the terminal glycine of MOCS2A and URM1 was examined for the interaction and the cellular localization with MOCS3. Deletion of the C-terminal glycine of either MOCS2A or URM1 resulted in a loss of interaction with MOCS3. Enhanced cyan fluorescent protein and enhanced yellow fluorescent protein fusions of the proteins were constructed, and the fluorescence resonance energy transfer efficiency was determined by the decrease in the donor lifetime. The cellular localization results showed that extension of the C terminus with an additional glycine of MOCS2A and URM1 altered the localization of MOCS3 from the cytosol to the nucleus.
منابع مشابه
THE DUAL ROLE OF THE MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN MOCS3 IN tRNA THIOLATION AND MOLYBDENUM COFACTOR BIOSYNTHESIS IN HUMANS
Background: E1-like proteins are required for activation and thiocarboxylation of β-grasp fold proteins involved in sulfurtransfer to cofactors and tRNA. Results: MOCS3 interacts with both URM1 and MOCS2A in vivo and in vitro. Conclusion: Molybdenum cofactor biosynthesis and tRNA thiolation steps are linked by the MOCS3 protein in humans. Significance: To understand the mechanism of protein con...
متن کاملThe L-Cysteine Desulfurase NFS1 Is Localized in the Cytosol where it Provides the Sulfur for Molybdenum Cofactor Biosynthesis in Humans
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no di...
متن کاملEvidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans.
Recent studies have identified the human genes involved in the biosynthesis of the molybdenum cofactor. The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. The MOCS3 protein is believed to catalyze both the adenylation and the subsequent generation of a thiocarboxy...
متن کاملShared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes
Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm⁵s²U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an i...
متن کاملThe sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis.
The Escherichia coli L-cysteine desulfurase IscS mobilizes sulfur from L-cysteine for the synthesis of several biomolecules such as iron-sulfur (FeS) clusters, molybdopterin, thiamin, lipoic acid, biotin, and the thiolation of tRNAs. The sulfur transfer from IscS to various biomolecules is mediated by different interaction partners (e.g. TusA for thiomodification of tRNAs, IscU for FeS cluster ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 21 شماره
صفحات -
تاریخ انتشار 2012